

Home Search Collections Journals About Contact us My IOPscience

Einstein metrics with A16-type holonomy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 61

(http://iopscience.iop.org/0305-4470/35/1/305)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.106 The article was downloaded on 02/06/2010 at 09:57

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 35 (2002) 61-63

PII: S0305-4470(02)29737-1

Einstein metrics with A₁₆-type holonomy

Ryad Ghanam

Department of Mathematics, University of Wisconsin-Rock County, Janesville, WI 53546, USA

E-mail: rghanam@uwc.edu

Received 2 October 2001, in final form 8 November 2001 Published 21 December 2001 Online at stacks.iop.org/JPhysA/35/61

Abstract

Einstein neutral metrics in dimension four are constructed. They provide examples of holonomy type A_{16} .

PACS number: 02.40.+m

The holonomy group of a metric g at a point x of a manifold M is the group of linear transformations in the tangent space of x defined by parallel translation along all possible loops starting at x. For connections on connected manifolds, holonomy groups of different points are isomorphic, and so we shall refer to *the* holonomy group of g and denote it by Hol(g) [1].

If one restricts to curves which are null homotopic, one obtains the restricted holonomy group $Hol^{\circ}(g)$ of M, which is the identity component of Hol(g). Clearly Hol(g) and $Hol^{\circ}(g)$ are equal if M is simply connected. Also, Hol(g) and $Hol^{\circ}(g)$ are Lie groups.

It is obvious that a connection can only be the Levi-Civita connection of a metric g if the holonomy group is a subgroup of the generalized orthogonal group corresponding to the signature of g [2].

At any point $x \in M$, and in some coordinate system about x, the set of matrices of the form

 $\mathbf{R}^{a}_{bcd}\mathbf{X}^{c}\mathbf{Y}^{d}$ $\mathbf{R}^{a}_{bcd:e}\mathbf{X}^{c}\mathbf{Y}^{d}\mathbf{Z}^{e}$ $\mathbf{R}^{a}_{bcd:ef}\mathbf{X}^{c}\mathbf{Y}^{d}\mathbf{Z}^{e}\mathbf{W}^{f}\cdots$

where X, Y, Z, $W \in T_x M$ and a semi-colon denotes a covariant derivative, forms a Lie subalgebra of the Lie algebra of $M_n(\mathbb{R})$ of $GL(n, \mathbb{R})$ called the *infinitesimal holonomy* algebra of M at x. Up to isomorphism the latter is independent of the coordinate system chosen and is denoted by hol'(g). The corresponding uniquely determined connected subgroup of $GL(n, \mathbb{R})$ is called the infinitesimal holonomy group of M at x and is denoted by Hol'(g). The Lie algebra hol'(g) for each $x \in M$ [3–5].

In a recent paper, Ghanam and Thompson [6] studied and classified the holonomy Lie subalgebras of neutral metrics in dimension four. In this paper, we will study one of these subalgebras A_{16} and construct Einstein metrics of holonomy type A_{16} .

0305-4470/02/010061+03\$30.00 © 2002 IOP Publishing Ltd Printed in the UK

 A_{16} is a two-dimensional Lie subalgebra generated by $\begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}$ and $\begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}$ where $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. By a change of basis, one obtains a new set of generators, namely, $\begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & J \end{bmatrix}$. Consider \mathbb{R}^2 with coordinates (x, y), and let

$$g = \begin{bmatrix} a & c \\ c & b \end{bmatrix} \tag{1}$$

be a two-dimensional metric, where *a*, *b* and *c* are smooth functions of *x* and *y*. Then the equation $gJ+(gJ)^t = 0$ implies that a = b and c = 0. Hence g = a(x, y)I, where *I* is the 2 × 2 identity matrix. We apply the de Rham decomposition theorem: use a pair of non-flat two-dimensional Riemannian metrics with the signs adjusted so as to produce a neutral four-dimensional metric. This proves that A_{16} is a holonomy Lie algebra of four-dimensional neutral metric.

Let us turn to equation (1). The non-zero components of the Ricci tensor are

$$R_{11} = R_{22} = \frac{\left(a_{yy}a + a_{xx}a - a_y^2 - a_x^2\right)}{2a^2}$$
(2)

and the Ricci scalar is given by

$$R = \frac{\left(a_{yy}a + a_{xx}a - a_{y}^{2} - a_{x}^{2}\right)}{a^{3}}.$$
(3)

The Einstein condition entails that

$$R_{ij} = \frac{1}{4} R g_{ij} \tag{4}$$

and so if we take i = j = 1 in equation (4), we obtain the following PDE:

$$a(a_{xx} + a_{yy}) - \left(a_x^2 + a_y^2\right) = 0.$$
 (5)

We will solve equation (5) by separation of variables. Let

$$a(x, y) = f(x)h(y)$$
(6)

where f and h are smooth functions of x and y, respectively. Equation (5) becomes

$$fh(f''h + fh'') - ((f')^2h^2 + f^2(h')^2) = 0$$
(7)

and so

$$h^{2}(ff'' - (f')^{2}) + f^{2}(hh'' - (h')^{2}) = 0.$$
(8)

If we divide equation (8) by f^2h^2 we obtain

$$\frac{ff'' - (f')^2}{f^2} = \frac{(h')^2 - hh''}{h^2}.$$
(9)

This implies that

$$\frac{ff'' - (f')^2}{f^2} = \frac{(h')^2 - hh''}{h^2} = c$$
(10)

where *c* is a constant. Now we will consider two cases:

Case (1). If c = 0, then equation (10) gives

$$ff'' - (f')^2 = 0 (11)$$

and

$$(h')^2 - hh'' = 0. (12)$$

To solve equation (11) we use the following substitution:	
$f(x) = \mathrm{e}^{z(x)}$	(13)
where $z(x)$ is a smooth function of x. We substitute equation (13) in equation (11) to obtain
$e^{z}(z''e^{z} + (z')^{2}e^{z}) - (z')^{2}e^{2z} = 0$	(14)
and so	
$z^{\prime\prime}=0.$	(15)
Hence	
$z(x) = c_1 x + c_2$	(16)
where c_1 and c_2 are constants. Hence	
$f(x) = \mathrm{e}^{c_1 x + c_2}.$	(17)
Similarly equation (12) implies that	
$h(y) = e^{c_3 y + c_4}$	(18)
where c_3 and c_4 are constants. Therefore the two-dimensional Einstein metric g	is given by
$g = e^{c_1 x + c_2 y + c_3} (dx^2 + dy^2)$	(19)
and so the four-dimensional Einstein neutral metric with holonomy type A_{16} is	
$g = e^{c_1 x + c_2 y + c_3} (dx^2 + dy^2) - e^{c_4 z + c_5 t + c_6} (dz^2 + dt^2)$	(20)
where (x, y, z, t) is a coordinate system on \mathbb{R}^4 .	
<i>Case</i> (2). If $c \neq 0$, then equation (10) gives	
$ff'' - (f')^2 - cf^2 = 0$	(21)
and	
$(h')^2 - hh'' - ch^2 = 0.$	(22)
To solve equation (21) , we use equation (13) to obtain	
z''-c=0.	(23)
and so	
$z(x) = \frac{1}{2}cx^2 + c_1x + c_2.$	(24)
To solve equation (22), we let $h(y) = e^{w(y)}$ to obtain	
w'' + c = 0	(25)
and so	
$w(y) = -\frac{1}{2}cy^2 + c_3y + c_4.$	(26)

Thus, the two-dimensional Einstein metric g is given by

$$g = e^{\frac{1}{2}c(x^2 - y^2) + c_1 x + c_2 y + c_3} (dx^2 + dy^2)$$
(27)

and so the four-dimensional Einstein neutral metric with holonomy type A_{16} is

$$g = e^{\frac{1}{2}c(x^2 - y^2) + c_1 x + c_2 y + c_3} (dx^2 + dy^2) - e^{\frac{1}{2}r(z^2 - t^2) + c_4 z + c_5 t + c_6} (dz^2 + dt^2).$$
(28)

where c_1 , c_2 , c_3 , c_4 , c_5 , c_6 and r are constants.

References

- [1] Hall G S 1995 Gen. Rel. Grav. 26 567
- [2] Schmidt B G 1973 Commun. Math. Phys. 29 55
- [3] Besse A 1987 Einstein Manifolds (Berlin: Springer)
- [4] Hall G S and Kay W 1988 J. Math. Phys. 29 420
- [5] Hall G S and Kay W 1988 J. Math. Phys. 29 428
- [6] Ghanam R and Thompson G 2001 J. Math. Phys. 42 2266